18 research outputs found

    Effects of in vitro short- and long-term treatment with telomerase inhibitor in U-251 glioma cells

    Get PDF
    BACKGROUND: The inhibition of the enzyme telomerase (TERT) has been widely investigated as a new pharmacological approach for cancer treatment, but its real potential and the biochemical consequences are not totally understood. OBJECTIVE: Here, we investigated the effects of the telomerase inhibitor MST-312 on a human glioma cell line after both short- and long-term (290 days) treatments. METHODS: Effects on cell growth, viability, cell cycle, morphology, cell death and genes expression were assessed. RESULTS: We found that short-term treatment promoted cell cycle arrest followed by apoptosis. Importantly, cells with telomerase knock-down revealed that the toxic effects of MST-312 are partially TERT dependent. In contrast, although the long-term treatment decreased cell proliferation at first, it also caused adaptations potentially related to treatment resistance and tumor aggressiveness after long time of exposition. CONCLUSIONS: Despite the short-term effects of telomerase inhibition not being due to telomere erosion, they are at least partially related to the enzyme inhibition, which may represent an important strategy to pave the way for tumor growth control, especially through modulation of the non-canonical functions of telomerase. On the other hand, long-term exposure to the inhibitor had the potential to induce cell adaptations with possible negative clinical implications

    Neuroprotective effects on microglia and insights into the structure–activity relationship of an antioxidant peptide isolated from Pelophylax perezi

    Get PDF
    © 2022 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly citedTryptophyllins constitute a heterogeneous group of peptides that are one of the first classes of peptides identified from amphibian's skin secretions. Here, we report the structural characterization and antioxidant properties of a novel tryptophyllin-like peptide, named PpT-2, isolated from the Iberian green frog Pelophylax perezi. The skin secretion of P. perezi was obtained by electrical stimulation and fractionated using RP-HPLC. De novo peptide sequencing was conducted using MALDI MS/MS. The primary structure of PpT-2 (FPWLLS-NH2 ) was confirmed by Edman degradation and subsequently investigated using in silico tools. PpT-2 shared physicochemical properties with other well-known antioxidants. To test PpT-2 for antioxidant activity in vitro, the peptide was synthesized by solid phase and assessed in the chemical-based ABTS and DPPH scavenging assays. Then, a flow cytometry experiment was conducted to assess PpT-2 antioxidant activity in oxidatively challenged murine microglial cells. As predicted by the in silico analyses, PpT-2 scavenged free radicals in vitro and suppressed the generation of reactive species in PMA-stimulated BV-2 microglia cells. We further explored possible bioactivities of PpT-2 against prostate cancer cells and bacteria, against which the peptide exerted a moderate antiproliferative effect and negligible antimicrobial activity. The biocompatibility of PpT-2 was evaluated in cytotoxicity assays and in vivo toxicity with Galleria mellonella. No toxicity was detected in cells treated with up to 512 µg/ml and in G. mellonella treated with up to 40 mg/kg PpT-2. This novel peptide, PpT-2, stands as a promising peptide with potential therapeutic and biotechnological applications, mainly for the treatment/prevention of neurodegenerative disorders.This work was financed by FEDER - Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 - Operacional Programme for Competitiveness and Internationalization (POCI), and by Portuguese funds through FCT - Fundação para a Ciência e a Tecnologia in the framework of the project POCI-01-0145-FEDER-031158 – PTDC/BII-BIO/31158/2017. The authors would like to thank the participation and scientific support of the Unit projects UIDB/50006/2020 | UIDP/50006/2020, and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Universal Faixa ‘B’ (grant number 32103/2018-0). A.P. is a recipient of a post-doctoral grant from the project PTDC/BII-BIO/31158/2017. The authors would like to thank the researcher Roberto Resendes (CiBio, University of the Azores, Ponta Delgada, São Miguel, Azores, Portugal) for the logistical support in the collection of samples. C.P.A acknowledges FCT-MCTES fellowship PD/BD/136860/2018. A.B.-N. and F.C.D.A.L. acknowledge CNPq (grants 420449/2018-3 and 428211/2018-6) for financial support.info:eu-repo/semantics/publishedVersio

    Promising self-emulsifying drug delivery system loaded with lycopene from red guava (Psidium guajava L.): in vivo toxicity, biodistribution and cytotoxicity on DU-145 prostate cancer cells

    Get PDF
    Background Self-emulsifying drug delivery systems (SEDDSs) have attracted attention because of their effects on solubility and bioavailability of lipophilic compounds. Herein, a SEDDS loaded with lycopene purified from red guava (nanoLPG) was produced. The nanoemulsion was characterized using dynamic light scattering (DLS), zeta potential measurement, nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), lycopene content quantification, radical scavenging activity and colloidal stability in cell culture medium. Then, in vivo toxicity and tissue distribution in orally treated mice and cytotoxicity on human prostate carcinoma cells (DU-145) and human peripheral blood mononuclear cells (PBMC) were evaluated. Results NanoLPG exhibited physicochemical properties with a size around 200 nm, negative zeta-potential, and spherical morphology. The size, polydispersity index, and zeta potential parameters suffered insignificant alterations during the 12 month storage at 5 °C, which were associated with lycopene stability at 5 °C for 10 months. The nanoemulsion showed partial aggregation in cell culture medium at 37 °C after 24 h. NanoLPG at 0.10 mg/mL exhibited radical scavenging activity equivalent to 0.043 ± 0.002 mg Trolox/mL. The in vivo studies did not reveal any significant changes in clinical, behavioral, hematological, biochemical, and histopathological parameters in mice orally treated with nanoLPG at 10 mg/kg for 28 days. In addition, nanoLPG successfully delivered lycopene to the liver, kidney and prostate in mice, improved its cytotoxicity against DU-145 prostate cancer cells—probably by pathway independent on classical necrosis and apoptosis—and did not affect PBMC viability. Conclusions Thus, nanoLPG stands as a promising and biosafe lycopene delivery system for further development of nanotechnology-based health products

    Práticas Educomunicativas

    Get PDF
    Esta publicação pretende divulgar as práticas educomunicativas realizadas em diferentes regiões do país e que estão sendo implantadas por nossos associados. O e-book Práticas Educomunicativas, que visa oferecer um material de uso prático que possa servir de apoio pedagógico em diferentes contextos, escolar ou de ações junto a instituições, apresenta 20 artigos de profissionais e pesquisadores que implementam ações que inter-relacionam comunicação e educação no contexto da educação apontando as experiências e processos de educomunicação e valorizando desta forma, o trabalho realizado por cada educomunicador oferecendo, ao leitor, um material de uso prático que possa servir de apoio pedagógico em diferentes contextos

    GLP overexpression is associated with poor prognosis in Chronic Lymphocytic Leukemia and its inhibition induces leukemic cell death

    No full text
    Background Heterodimeric methyltransferases GLP (EHMT1/KMT1D) and G9a (EHMT2/KMT1C) are two closely related enzymes that promote the monomethylation and dimethylation of histone H3 lysine 9. Dysregulation of their activity has been implicated in several types of human cancer. Patients and methods Here, in order to investigate whether GLP/G9a exerts any impact on Chronic Lymphocytic Leukemia (CLL), GLP/G9a expression levels were assessed in a cohort of 50 patients and the effects of their inhibition were verified for the viability of CLL cells. Also, qRT-PCR was used to investigate the transcriptional levels of GLP/G9a in CLL patients. In addition, patient samples were classified according to ZAP-70 protein expression by flow cytometry and according to karyotype integrity by cytogenetics analysis. Finally, a selective small molecule inhibitor for GLP/G9a was used to ascertain whether these methyltransferases influenced the viability of MEC-1 CLL cell lineage. Results mRNA analysis revealed that CLL samples had higher levels of GLP, but not G9a, when compared to non-leukemic controls. Interestingly, patients with unfavorable cytogenetics showed higher expression levels of GLP compared to patients with favorable karyotypes. More importantly, GLP/G9a inhibition markedly induced cell death in CLL cells. Conclusion Taken together, these results indicate that GLP is associated with a worse prognosis in CLL, and that the inhibition of GLP/G9a influences CLL cell viability. Altogether, the present data demonstrate that these methyltransferases can be potential markers for disease progression, as well as a promising epigenetic target for CLL treatment and the prevention of disease evolution

    Assessment of MLL methyltransferase gene expression in larynx carcinoma

    No full text
    Larynx cancer is the second most common type of cancer among all head and neck cancers. Deregulation of epigenetic effectors, including altered expression of histone methyltransferases from the MLL (mixed lineage leukemia) family, have been reported in many cancer types, yet little is known concerning their involvement in larynx cancer. Our objective was to determine the expression profile of MLL genes in larynx carcinoma and normal adjacent tissues and correlate this profile to tumor characteristics. We analyzed the expression profile of 5 MLL genes in 13 cases of larynx carcinoma and their adjacent non-tumor tissues using quantitative real-time PCR. MLL3 was significantly downregulated in tumor samples compared to their normal counterparts, and all MLL genes showed decreased expression in advanced tumors compared to tumors in the initial stage. Altered expression in a single MLL gene was associated with a similar alteration in the other MLL genes, revealing a strong correlation of expression in each individual patient. In conclusion, MLL genes may have similar transcriptional control, and decreased expression of these genes may contribute to larynx cancer progression
    corecore